Chain Rule of Derivatives – Examples with Answers

Derivation problems that involve the composition of functions can be solved using the chain rule formula. This formula allows us to derive a composition of functions, such as but not limited to f(g(x)).

Here, we will look at a summary of the chain rule. Additionally, we will explore several examples with answers to understand the application of the chain rule formula.

CALCULUS
Formula for the chain rule of derivatives

Relevant for

Exploring examples with answers of the chain rule.

See examples

CALCULUS
Formula for the chain rule of derivatives

Relevant for

Exploring examples with answers of the chain rule.

See examples

Summary of the chain rule

The chain rule is a very useful tool used to derive a composition of different functions. It is a rule that states that the derivative of a composition of at least two different types of functions is equal to the derivative of the outer function f(u) multiplied by the derivative of the inner function g(x), where u=g(x).

This gives us the formula for the chain rule of derivatives as:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x))) \cdot \frac{d}{x}(g(x))$$

or in another form, it can be illustrated as:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

where

  • $latex f(u) =$ the outer function
  • $latex u = g(x)$, the domain of the outer function $latex f(u)$
  • $latex \frac{dy}{du} =$ the derivative of the outer function $latex f(u)$ in terms of $latex u$
  • $latex \frac{du}{dx} =$ the derivative of the inner function $latex g(x)$ in terms of $latex x$.

We use this formula to derive functions that have the following forms:

$latex H(x) = f(g(x))$


Chain rule of derivatives – Examples with answers

EXAMPLE 1

Derive the following function:

$latex H(x) = (x+2)^2$

The first thing we need to do is to write the chain rule formula for our reference:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{x}(g(x))$$

Assuming you are a beginner, let’s identify the functions involved from function composition:

We have

$latex H(x) = (x+2)^2$

If we use the substitution $latex u = g(x) = x+2$, we can write

$latex f(g(x)) = f(u)$

$latex f(u) = u^2$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^2) \cdot \frac{d}{x}(x+2)$$

$$\frac{d}{dx} (H(x)) = (2u) \cdot (1)$$

Since $latex u = x+2$, let us substitute back:

$$\frac{d}{dx} (H(x)) = [2 \cdot (x+2)] \cdot (1)$$

Simplifying algebraically, we have

$latex H'(x) = 2(x+2)$

And the final answer is:

$latex H'(x) = 2x + 4$

EXAMPLE 2

Find the derivative of

$latex H(x) = (x^3 – 3x^2 + 2x)^5$

If we use the substitution $latex g(x) = u=x^3 – 3x^2 + 2x$, we have:

$latex f(g(x)) = f(u)$

$latex f(u) = u^5$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^5) \cdot \frac{d}{dx}(x^3 – 3x^2 + 2x)$$

$$\frac{d}{dx} (H(x)) = (5u^4) \cdot (3x^2-6x+2)$$

Now, we can substitute $latex u=x^3 – 3x^2 + 2x$ back in:

$$\frac{d}{dx} (H(x)) = [5 \cdot (x^3 – 3x^2 + 2x)^4]\cdot (3x^2-6x+2)$$

Simplifying algebraically, we have

$$H'(x) = (5x^3-15x^2+10x)^4 \cdot (3x^2-6x+2)$$

And the final answer is:

$$H'(x) = (5x^3-15x^2+10x)^4 (3x^2-6x+2)$$

EXAMPLE 3

Derive the following function:

$latex F(x) = \ln{(3x^2-1)}$

If we consider $latex g(x)=u=3x^2-1$, we can write as follows:

$latex f(g(x)) = f(u)$

$latex f(u) = \ln{(u)}$

Then, we apply the chain rule:

$$ \frac{d}{dx} (F(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (\ln(u)) \cdot \frac{d}{x}(3x^2-1)$$

$$\frac{d}{dx} (F(x)) = (\frac{1}{u}) \cdot (6x)$$

Substituting $latex u=3x^2-1$ back in, we have:

$$\frac{d}{dx} (F(x)) = (\frac{1}{3x^2-1}) \cdot (6x)$$

Simplifying, we have

$$F'(x) = \frac{6x}{3x^2-1}$$

And the final answer is:

$$F'(x) = \frac{6x}{3x^2-1}$$

EXAMPLE 4

What is the derivative of the following function?

$latex G(x) = e^{3x^2+1}$

We start by considering that the inner function is $latex g(x)=u=3x^2+1$. Then, the composition of functions can be written as:

$latex f(g(x)) = f(u)$

$latex f(u) = e^u$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (G(x)) = \frac{d}{dx} (f(g(x))) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (G(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (G(x)) = \frac{d}{du} (e^u) \cdot \frac{d}{x}(3x^2+1)$$

$$\frac{d}{dx} (G(x)) = (e^u) \cdot (6x)$$

Since $latex u = 3x^2+1$, we substitute in the derivative:

$$\frac{d}{dx} (G(x)) = (e^{3x^2+1}) \cdot (6x)$$

$$G'(x) = 6x \cdot e^{3x^2+1}$$

And the final answer is:

$$G'(x) = 6xe^{3x^2+1}$$

EXAMPLE 5

Use the chain rule to derive the following function:

$latex H(x) = \cos{(x^3-9)}$

If we consider the inner function as $latex g(x) = u=x^3-9$, then

$latex f(g(x)) = f(u)$

$latex f(u) = \cos(u)$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (\cos(u)) \cdot \frac{d}{dx}(x^3 – 9)$$

$$\frac{d}{dx} (H(x)) = (-\sin(u)) \cdot (3x^2)$$

Since $latex u = g(x)$, we substitute $latex g(x)$ into $latex u$:

$$\frac{d}{dx} (H(x)) = (-\sin(x^3-9)) \cdot (3x^2)$$

Simplifying, we have

$latex H'(x) = -3x^2 \cdot \sin{(x^3-9)}$

And the final answer is:

$latex H'(x) = -3x^2 \sin{(x^3-9)}$

EXAMPLE 6

Find the derivative of

$latex H(x) = \sqrt[3]{x^3 – 3x^2 + 2x}$

Let us identify the functions involved from the composition of functions:

We have

$$H(x) = \sqrt[3]{x^3 – 3x^2 + 2x}$$

Since this is a radical function, it is always recommended to rewrite it from radical to exponent form to make it derivable. Rewriting, we have

$$ H(x) = (x^3 – 3x^2 + 2x)^{\frac{1}{3}}$$

If $latex g(x) = u=x^3-3x^2+2x$, then

$latex f(g(x)) = f(u)$

$latex f(u) = u^{\frac{1}{3}}$

By using the chain rule with these functions, we have:

$$ \frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{dx}(g(x))$$

$$ \frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^{\frac{1}{3}} ) \cdot \frac{d}{dx}(x^3 – 3x^2 + 2x)$$

$$\frac{d}{dx} (H(x)) = (\frac{1}{3} u^{-\frac{2}{3}}) \cdot (3x^2-6x+2)$$

Now, we can substitute $latex u=g(x)$ back in:

$$\frac{d}{dx} (H(x)) = [(\frac{1}{3} \cdot (x^3 – 3x^2 + 2x)^{-\frac{2}{3}})]\cdot (3x^2-6x+2)$$

Simplifying, we have

$$H'(x) = \frac{1}{3 \cdot (x^3 – 3x^2 + 2x)^{\frac{2}{3}}} \cdot (3x^2-6x+2)$$

$$H'(x) = \frac{3x^2-6x+2}{3 \cdot (x^3 – 3x^2 + 2x)^{\frac{2}{3}}}$$

And the final answer is:

$$H'(x) = \frac{3x^2-6x+2}{3 \sqrt[3]{(x^3 – 3x^2 + 2x)^2}}$$
en forma radical

EXAMPLE 7

Calculate the derivative of the function

$latex H(x)=\sec^{5}{x}$

Considering $latex g(x) = u=\sec(x)$ as the inner function, we can write

$latex f(g(x)) = f(u)$

$latex f(u) = u^5$

Using the chain rule, we have:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^5 ) \cdot \frac{d}{dx}(\sec{(x)})$$

$$\frac{d}{dx} (H(x)) = (5u^4) \cdot (\sec{(x)} \tan{(x)})$$

Now, we can substitute $latex u=\sec(x)$ back into the derivative:

$$\frac{d}{dx} (H(x)) = [5(\sec(x))^4] \cdot (\sec(x) \tan(x))$$

Simplifying, we have

$$H'(x) = 5 \cdot \sec{(x)} \cdot \sec^{4}{(x)} \cdot \tan(x)$$

$$H'(x) = 5 \cdot \tan(x) \cdot \sec^{5}{(x)}$$

And the final answer is:

$latex H'(x) = 5 \tan{(x)} \sec^{5}{(x)}$

EXAMPLE 8

Find the derivative of the following function

$latex F(x) = \log_{7}{(x^3+e^x)}$

If $latex g(x) = u=x^3+e^x$, then

$latex f(g(x)) = f(u)$

$latex f(u) = \log_{7}{u}$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (F(x)) = \frac{d}{dx} (f(g(x))) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (\log_{7}{u} ) \cdot \frac{d}{dx}(x^3+e^x)$$

$$\frac{d}{dx} (F(x)) = \left(\frac{1}{u \ln(7)} \right) \cdot (3x^2+e^x)$$

Now, let’s substitute $latex u=x^3+e^x$:

$$\frac{d}{dx} (F(x)) = \left(\frac{1}{(x^3+e^x) \ln(7)} \right) \cdot (3x^2+e^x)$$

Simplifying algebraically, we have

$$\frac{d}{dx} (F(x)) = \left(\frac{1}{(x^3+e^x) \ln{(7)}} \right) \cdot (3x^2+e^x)$$

$$\frac{d}{dx} (F(x)) = \left(\frac{3x^2+e^x}{(x^3+e^x) \ln{(7)}} \right)$$

And the final answer is:

$$F'(x) = \left(\frac{3x^2+e^x}{(x^3+e^x) \ln{(7)}} \right)$$

EXAMPLE 9

Use the chain rule to find the derivative of

$$F(x) = \cot^{-1}{\left(\frac{x-1}{x+2} \right)}$$

Considering $latex g(x)=u=\frac{x-1}{x+2}$ as the inner function, we have:

$latex f(g(x)) = f(u)$

$latex f(u) = \cot^{-1}{(u)}$

Now, we can use the chain rule with the functions we have defined:

$$\frac{d}{dx} (F(x)) = \frac{d}{dx} (f(g(x))) \cdot \frac{d}{dx}(g(x))$$

$$ \frac{d}{dx} (F(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (\cot^{-1}(u)) \cdot \frac{d}{dx} \left(\frac{x-1}{x+2} \right)$$

$$\frac{d}{dx} (F(x)) = \left(-\frac{1}{u^2+1} \right) \cdot \left(\frac{2}{(x+1)^2} \right)$$

Since $latex u = g(x)$, we substitute $latex g(x)$ into $latex u$:

$$\frac{d}{dx} (F(x)) = \left(-\frac{1}{ \left(\frac{x-1}{x+1} \right)^2+1} \right) \cdot \left(\frac{2}{(x+1)^2} \right)$$

Simplifying, we have

$$\frac{d}{dx} (F(x)) = -\frac{2}{\left(\left(\frac{x-1}{x+1} \right)^2+1\right) \cdot (x+1)^2}$$

$$\frac{d}{dx} (F(x)) = -\frac{1}{x^2+1}$$

And the final answer is:

$$F'(x) = -\frac{1}{x^2+1}$$

EXAMPLE 10

What is the derivative of the following function?

$latex f(x) = \tan^{2}{(e^{3x})}$

This is a more complex case since the function $latex H(x)$ is a composition of four functions.

If $latex f(g(h(j(x)))) = u$, then

$latex f(g(h(j(x)))) = f(u)$
$latex f(u) = u^2$

If $latex g(h(j(x))) = v$, then

$latex g(h(j(x))) = g(v)$
$latex g(v) = \tan{(v)}$

If $latex h(j(x)) = w$, then

$latex h(j(x)) = h(w)$
$latex h(w) = e^w$

$latex w = j(x) = 3x$

If $latex f(g(h(j(x)))) = f(u)$, then

$$\frac{d}{dx} [f(g(h(j(x))))] = \frac{d}{du} [f(u)]$$

If $latex g(h(j(x))) = g(v)$, then

$$\frac{d}{dx} [g(h(j(x)))] = \frac{d}{dv} [g(v)]$$

If $latex h(j(x)) = h(w)$, then

$$\frac{d}{dx} [h(j(x))] = \frac{d}{dw} [h(w)]$$

Adjusting our chain rule formula for the derivative of compositions of four functions, we have

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} \left(f(g(h(j(x)))) \right)\cdot \frac{d}{dx} \left(g(h(j(x))) \right) \cdot \left(h(j(x)) \right) \cdot \frac{d}{dx}(j(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} \left(f(u)) \right) \cdot \frac{d}{dv} \left(g(v)) \right) \cdot \frac{d}{dw} \left(h(w)) \right) \cdot \frac{d}{dx}(j(x))$$

Applying our adjusted chain rule formula for the derivative of the composition of four functions, we have

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^2) \cdot \frac{d}{dv} (\tan{(v)}) \cdot \frac{d}{dw} (e^w) \cdot \frac{d}{dx}(3x)$$

$$\frac{d}{dx} (H(x)) = (2u) \cdot (\sec^{2}{(v)}) \cdot (e^w) \cdot (3)$$

Since $latex u = g(h(j(x)))$, $latex v = h(j(x))$ and $latex w = j(x)$, let’s apply these substitutions:

$$\frac{d}{dx} (H(x)) = (2(\tan{(e^{3x})})) \cdot (\sec^{2}{(e^{3x})}) \cdot (e^{3x}) \cdot (3)$$

Simplifying algebraically, we have

$$\frac{d}{dx} (H(x)) = 2 \cdot 3 \cdot e^{3x} \cdot \tan{(e^{3x})} \cdot \sec^{2}{(e^{3x})}$$

$$H'(x) = 6 \cdot (e^{3x}) \cdot \tan{(e^{3x})} \cdot \sec^{2}{(e^{3x})}$$

And the final answer is:

$$ H'(x) = 6 \cdot (e^{3x}) \tan{(e^{3x})} \sec^{2}{(e^{3x})}$$

As you can see from our solution to this problem, deriving compositions of four functions, you will realize why the chain rule was coined from the term “chain”.


Chain Rule of derivatives – Practice problems

Chain rule of derivatives quiz
Logo
You have completed the quiz!

Find the derivative of the following function and determine the value of $latex F^{\prime}(0)$: $latex F(x) = (x^3+\sin{(x)})^2$?

Write the answer in the input box.

$latex F^{\prime}(0)=$

See also

Interested in learning more about the chain rule? Check out these pages:

Profile picture for author Jefferson Huera Guzman

Jefferson Huera Guzman

Jefferson is the lead author and administrator of Neurochispas.com. The interactive Mathematics and Physics content that I have created has helped many students.

Learn mathematics with our additional resources in different topics

LEARN MORE